NAG C Library Function Document

nag prob non central f dist (g01gdc)

1 Purpose

 $nag_prob_non_central_f_dist$ (g01gdc) returns the probability associated with the lower tail of the non-central F or variance-ratio distribution.

2 Specification

3 Description

The lower tail probability of the non-central F-distribution with ν_1 and ν_2 degrees of freedom and non-centrality parameter λ , $P(F \le f : \nu_1, \nu_2; \lambda)$, is defined by

$$P(F \le f : \nu_1, \nu_2; \lambda) = \int_0^x p(F : \nu_1, \nu_2; \lambda) dF$$

where

$$P(F:\nu_1,\nu_2;\lambda) = \sum_{j=0}^{\infty} e^{-\lambda/2} \frac{(\lambda/2)^j}{j!} \times \frac{(\nu_1 + 2j)^{(\nu_1 + 2j)/2} \nu_2^{\nu_2/2}}{B((\nu_1 + 2j)/2, \nu_2/2)}$$

$$\times u^{(\nu_1+2j-2)/2} [\nu_2 + (\nu_1+2j)u]^{-(\nu_1+2j+\nu_2)/2}$$

and $B(\cdot, \cdot)$ is the beta function.

The probability is computed by means of a transformation to a non-central beta distribution;

$$P(F \le f : \nu_1, \nu_2; \lambda) = P_{\beta}(X \le x : a, b; \lambda)$$

where $x = \frac{\nu_1 f}{\nu_1 f + \nu_2}$ and $P_{\beta}(X \leq x : a, b; \lambda)$ is the lower tail probability integral of the non-central beta distribution with parameters a, b, and λ .

If ν_2 is very large, greater than 10^6 , then a χ^2 approximation is used.

4 Parameters

1: \mathbf{f} - double Input

On entry: the deviate from the non-central F-distribution, f.

Constraint: $\mathbf{f} > 0$.

2: **df1** – double Input

On entry: the degrees of freedom of the numerator variance, ν_1 .

Constraint: $0.0 < df1 \le 1.0e6$.

3: **df2** – double *Input*

On entry: the degrees of freedom of the denominator variance, ν_2 .

Constraint: df2 > 0.0.

[NP3491/6] g01gdc.1

4: **lambda** – double *Input*

On entry: the non-centrality parameter, λ .

Constraint: $0.0 \le \text{lambda} \le -2.0 \times \log(U)$ where U is the safe range parameter as defined by nag real safe small number (X02AMC).

5: **tol** – double *Input*

On entry: the relative accuracy required by the user in the results. If nag_prob_non_central_f_dist is entered with **tol** greater than or equal to 1.0 or less than $10 \times machine\ precision$ (see nag machine precision (X02AJC)), then the value of $10 \times machine\ precision$ is used instead.

6: max_iter - Integer Input

On entry: the maximum number of iterations to be used.

Suggested value: 500. See nag_prob_non_central_chi_sq (g01gcc) and nag_prob_non_central_beta_dist (g01gec) for further details.

Constraint: $\max iter \ge 1$.

7: **fail** – NagError *

Input/Output

The NAG error parameter (see the Essential Introduction).

5 Error Indicators and Warnings

NE_REAL_ARG_CONS

On entry, $df1 = \langle value \rangle$.

This parameter must satisfy $0.0 < df1 \le 1.0e6$.

On entry, $lambda = \langle value \rangle$.

This parameter must satisfy $0.0 \le lambda \le -2.0 * log(X02AMC)$.

NE_REAL_ARG_LE

On entry, df2 must not be less than or equal to 0.0: df2 = $\langle value \rangle$.

On entry, **f** must not be less than or equal to 0.0: $\mathbf{f} = \langle value \rangle$.

NE INT ARG LT

On entry, max iter must not be less than 1: max iter = $\langle value \rangle$.

NE CONV

The solution has failed to converge in <value> iterations, consider increasing max iter or tol.

NE_PROB F

The required probability cannot be computed accurately. This may happen if the result would be very close to zero or one. Alternatively the values of **df1** and **f** may be too large. In the latter case the user could try using a normal approximation, see Abramowitz and Stegun (1972).

NE PROB F INIT

The required accuracy was not achieved when calculating the initial value of the central F or χ^2 probability. The user should try a larger value of **tol**. If the χ^2 approximation is being used then nag_prob_non_central_f_dist returns zero otherwise the value returned should be an approximation to the correct value.

g01gdc.2 [NP3491/6]

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

6 Further Comments

When both ν_1 and ν_2 are large a normal approximation may be used and when only ν_1 is large a χ^2 approximation may be used. In both cases λ is required to be of the same order as ν_1 . See Abramowitz and Stegun Abramowitz and Stegun (1972) for further details.

6.1 Accuracy

The relative accuracy should be as specified by **tol**. For further details see nag_prob_non_central_chi_sq (g01gcc) and nag prob non central beta dist (g01gec).

6.2 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions Dover Publications (3rd Edition)

7 See Also

```
nag_prob_non_central_chi_sq (g01gcc)
nag_prob_non_central_beta_dist (g01gec)
```

8 Example

Values from, and degrees of freedom for F-distributions are read, the lower-tail probabilities computed, and all these values printed, until the end of data is reached.

8.1 Program Text

```
/* nag_prob_non_central_f_dist (g01gdc) Example Program.
  Copyright 2000 Numerical Algorithms Group.
* NAG C Library
* Mark 6, 2000.
#include <stdio.h>
#include <nag.h>
#include <nagg01.h>
int main(void)
 double df1, df2, f, prob, lambda, tol;
 Integer max_iter;
 Integer exit_status=0;
 NagError fail;
 INIT_FAIL(fail);
 Vprintf("g01gdc Example Program Results\n");
/* Skip heading in data file */
 Vscanf("%*[^\n]");
```

[NP3491/6] g01gdc.3

8.2 Program Data

```
g01gdc Example Program Data
5.5 1.5 25.5 3.0 :f df1 lambda
39.9 1.0 1.0 2.0 :f df1 lambda
2.5 20.25 1.0 0.0 :f df1 lambda
```

8.3 Program Results

g01gdc Example Program Results

f	df1	df2	lambda	prob
5.500	1.500	25.500	3.000	0.8214
39.900	1.000	1.000	2.000	0.8160
2.500	20.250	1.000	0.000	0.5342

g01gdc.4 (last) [NP3491/6]